
CS377A – Introduction to Cybernetics Haggai Mark (hmark@stanford.edu)

Final Project – Second Order automatic Feedback System 11/16/07
Automatic Tutoring System

Goal: Mastery Level = 4 (out of 4)

 Domain: e.g. Middle school Algebra (list of subjects)

 Help Level: none

Sensor: eval trends (in HL, ML) +

 Domain coverage

Comparator
(is ML trend

>= goal in S,

and HL trend

= goal?

Observing System

Output

Input
Sensor collects/computes

ML and HL trend within a

subject. If ML >= goal and

HL is at goal, then it’s time

to go to the next higher

level subject in the Domain.

ML + HL Trend

(Up, Down) +

Domain

coverage

state

If ML and HL

trends gaps are

zero, time to move

to next subject in

Domain. Else,

lower ML goal. If

no lower ML,

lower subject.

Actuator:

Subject selector

+ ML, HL

establisher

Subject to

master and

level of

mastery

Answer to

question +

HL given.

Represented as Vector: [D, ML, HL]

Represented as Vector: [S, ML, HL]

Answer to

question (in

light of HL)

Subjects + Help

Domain Knowledge

Bank

(Subject Questions +

Help topics, etc.)

HL can change:

the lower the ML,

the more HL is

given. The higher

the ML, the lower

the HL given

System

Observed

system

Given a goal subject

determines which

questions will be

presented to learner.

Each question has

multiple levels of help

(HL), which the actuator

can present, if the ML is

lower than the goal ML.

Actuator changes ML and

Subject depending on

observed trends and gaps.

If ML and HL gaps are

zero, go/select higher level

subject. If ML within a

subject consistently low,

reduce goal ML, first, and if

that doesn’t help, lower

subject.

The Domain Bank has a

collection of Subjects.

Each subject has a

collection of questions.

Each question has

multiple levels of help

(HL), which the actuator

can present, if the ML is

lower than the goal ML.

Goal: Mastery Level >= 3 (out of 4)

 Given Subject (e.g. “Linear Equations”)

 Help Level: none

Sensor: Eval/scoring

algorithm

Comparator
(compares

ML and HL

for given S)

Disturbance: e.g., Learner

History, Heredity, Env.

Environment: Learner Ability

Lowers or raises

Output
Input:

Learner’s answer shows their ML.

An answer can have a certain

quality/completeness, translatable to

ML.

Answer quality/

completeness translated/

evaluated to an ML,

factoring in HL given (the

lower HL, the better)

Assesses

Difference in

ML (achieved

vs. goal).

Assesses

difference in

HL (given vs.

goal)

Actuator:

Question and

Help generator

for given S

Present

Question +

optional Help

if learner’s

ML is lower

than goal

Legend:
ML =Mastery Level (numeric val)

S = Subject area

D = Domain (set of Subjects)

HL = Help Level (numeric val)

mailto:hmark@stanford.edu

 GUI Spec:

Use cases/scenarios

1. Initialization

a. The learner starts the tutorial by pressing the “Start tutorial” button

b. The system picks a subject from the domain to be mastered and displays it in the “Subject” field (read-only)

c. The system picks a question from the selected subject and displays it in the “Question” field (read-only)

i. Each question has a system-assigned ML associated with it, based on its difficulty

d. No help topic is initially given in the “Help” field (read-only)

e. No Mastery Level (ML) is displayed in the “Mastery Level” field (read-only)

i. The system expects a ML of at least 3 out of 4 and will teach to that goal

f. The system is waiting for the learner’s response

2. Learner selects the answer that they think is correct from the drop-down list labeled “Answer”

3. Learner hits the “Submit answer” button

4. The system “calculates” the “Mastery Level” (ML) value associated with the learner’s answer and compares it to

the goal ML (set by the Tutoring System)

a. If the answer ML >= goal ML, the system will pick another question at the goal ML difficulty

i. Once the questions for the current subject are exhausted, and provided the learner is still performing

well (student ML >= goal ML), the system switches to the next Subject within the domain

b. If answer ML < goal ML (learner underperforming), help topics will be displayed to aid the learner

i. More detailed help is displayed in response to lower learner ML.

time

Mastery

Subject

Rotate around

Mastery

Rotate around

Subject

Rotate around

time

Start tutorial

Subject:

Question:

Help:

Mastery Level (ML): Subject 2 (e.g. Linear Equations – one variable)

Question 2.35 (e.g. What is the slope of: 5y + 10X = -15)

Help topic 2.35.1 (Optional)

3 out of 4

Answer:

Submit answer

e.g. -2 (ML 4)

Domain

 Subject1

 Question1.1

 Subject2

 Question2.1

 Question2.2

 Subject3

 Question3.1

 Question3.2

 Question3.3

 Question3.4

ii. When the help topics for that particular question are exhausted, the system will switch down to a

prerequisite subject (since it assumes the learner is struggling with prior/prerequisite concepts)

Data model:

 Domain – a list of Subjects

- The Domain has a designated first Subject (to help select a Subject appropriate to student’s ML)

- each Subject is linked to “supporting” subjects (prerequisites)

- each Subject is linked to Subjects “supported” by it (progression path to next Subject)

- The Domain has a count of Subjects within it

Note: within the domain, there are only dependencies (“supports” and “supporting”) between Subjects, but

not within a Subject (between the Questions). If someone needs dependencies among Questions, they should

be separate the Qs into two different Subjects, depending on each other. So this scheme of one level

dependence is flexible enough.

Subject – a list of Questions

- each Subject has a count of Questions within it

- has “completed” field to indicate student answered all Qs within Subject

- has a Subject-ML to capture learner ML for this Subject

Question – submitted by the system; requires student response (Answer)

- has links to Equivalent Questions (Questions about the same material, at the same level of difficulty)

o each Question has Number of Equivalent Questions

- has a link to Help topics relevant to this Q. Each Question has Max HL help topics

- has a link to all possible Answers for this Q (answer options, like multiple choice)

- has “answered” field to indicate it has been displayed and answered by student

Answer – a system-displayed answer, picked by learner

- has a score associated with it, mapped to the ML (e.g. fully correct -> 4, almost correct -> 3, etc.)

Help – a system-displayed help topic, available when student is underperforming

- additional topics (more detailed help) are displayed if learner’s ML drops

The Domain Model

- A multi-dimensional representation of the subject knowledge (topics, relationships, etc.) overlaid with a

learner’s profile (mastery, interest, etc.)

-

Pseudo Code:

[SOL-vector] = initialize-SOL()

[FOL-vector] = initialize-FOL()

while (learner-ML <= final-ML-goal and more-subjects)

 FOL:

FOL-ML-performance = comparator(FOL-ML-goal, learner-ML) // measure learner performance gap

[question, help] = FOL-actuator(FOL-ML-performance, subject) // determine what to display to learner

answer = display-to-learner(question, help) // learner action/response

learner-ML = FOL-sensor(answer, question) // assess/eval the answer

 SOL:

// same as FOL: learner-ML = SOL-sensor(answer) // SOL and FOL have same sensor, input, output

SOL-ML-performance = comparator(Final-ML-goal, learner-ML) // SOL and FOL have same comparator function, different inputs

[FOL-ML-goal, subject] = SOL-actuator(SOL-ML-performance)

end-while

FOL-actuator(FOL-ML-performance, subject)

 If (FOL-ML-performance >= 0) // learner doing OK

 question-type = new

 question = select-question(subject, question-type) // round robin on new questions within the given subject. Mark each Q as displayed

 help = null // no help topic needed

 HL = 0 // flag

 Else // learner underperforming

 question-type = equivalent // similar to the one learner underperformed on

 question = select-question(subject, question-type) // round robin on equivalent questions for failing question

 If (HL < max-HL) HL = HL + 1 // increment up to max help level supported by system

 help = build-help(HL, question) // concatenate 1-to-max help topics together for the selected question

 end-if

 return(question, help)

end

FOL-sensor(answer, question)

 Return(Learner-ML = calculate-student-score(answer)) // answer.score field

end

SOL-actuator(SOL-ML-performance)

 ML-trend = calculate-trends(SOL-ML-performance)

 If (SOL-ML-performance >= 0) // learner doing OK

 If (subject marked “completed”) // completed current subject

 subject.subject-ML = learner-ML // capture ML for this subject, before moving to next

 subject-type = supported-subject // next, higher-level subject

 subject = select-subject(subject, subject-type)

 initialize-new-subject(subject) // mark “incomplete”, etc.

 FOL-ML-goal = final-ML-goal // raise the bar to desired goal

 lowered-ML = false // start with high goal again

 reset-trends()

 end-if // if current subject not completed, stay with same subject

 else // learner underperforming

 If (ML-trend < acceptable)

 If (lowered-ML) // already lowered ML once

 subject-type = supporting-subject // need to drop to a prerequisite subject

 subject = select-subject(subject, subject-type)

 initialize-new-subject(subject) // mark “incomplete”, reset trend levels

 else // give learner a chance at a lower ML-goal level

 lower-ML = true

 FOL-ML-goal = final-ML-goal – 1 // lower the bar once below desired goal

 end

 return(FOL-ML-goal, subject)

end

initialize-SOL()

 domain = read-domain() // subjects, questions, help topics, expected answers

 for each subject within domain:

 initialize-new-subject(subject) // mark “incomplete”, reset trend levels

 // each question within each subject marked “not answered”

 final-ML-goal = 4

 max-HL = 2 // number of help levels per question

 learner-ML = final-ML-goal // assume learner will perform well

 subject = select-subject(domain, learner-ML) // select initial subject, based on assumed learner ML

 more-subjects = true // flag to indicate completion of domain (if no more subjects within it)

end

initialize-FOL()

 FOL-ML-goal = final-ML-goal // start at desired goal level

 HL = 0 // flag indicating actual help level

 question-type = new // start with new question

end

initialize-new-subject(subject)

 subject.state = incomplete

 HL = 0

 for each question within subject

 question.state = not-answered

end

reset-trends()

ML-trend = 4 // high/goal-ML is good

 HL-trend = 0 // no/low help is good

end

select-subject(subject, subject-type)

 // select either supporting or supported subject

 // need to deal with boundary conditions: no more supported or supporting subjects

end

select-question(subject, question-type)

 if (question-type == new)

 select next question in round robin fashion

 else // need equivalent question

 select equivalent question to current question

 end

 mark question as “answered”

 If (all answers market “answered”) // don’t worry about marking answers of equivalent questions

mark subject “completed”

end

comparator(ML-goal, learner-ML)

 return (gap = learner-ML - ML-goal) // if negative, learner performs poorly; >= 0 is good

end

Design Questions/Tradeoffs:

- Should the FOL be designed as an independent system, that can function in some intelligible way even if

disconnected from the SOL?

- Should the SOL “aspire” to pull the student to a higher ML

Possible To-Dos/extensions

- on the knowledge-map (k-map; tree browser for now)

o learner can explore the domain by selecting a subject, asking what it is about, and starting to

work in that area of the domain (e.g., question/answer sessions)

o learner can expand the domain by adding topics to the knowledge-map (after demonstrating

mastery, or gaining authority in some other way)

� Implies a k-map (or at least subject/topic) Editor to allow putting in content, in a standard

or templated format.

- on the k-map or the domain 3D cube

o the system will capture and display (pop-up, mouse-over, etc.) time spent exploring the subject

� this potentially indicates learner’s level of interest

o learner can select a subject and enter in the system

� notes, assessment, level of interest (subjective evaluation)

- Learner (and teacher, SME, others) should be able to load other people’s annotated, expanded k-maps

o Compare similarities, overlapping interests, etc.

o Identify differences/gaps (in mastery, interests, etc.)

o This obviously implies being able to upload/download/exchange/share k-maps with others

� Could develop a marketplace for k-maps

• Communities of “birds of a feather”

• Tutor-learner relationships/opportunities

• Domain/knowledge SME/supplier – consumer relationships/opportunities

• Implies mappable/equivalent/standard vocabularies, structures, etc. (challenge)

o Use of topic maps? (XTM, http://en.wikipedia.org/wiki/Topic_Maps)

- Learner should be able to ask the system for suggested navigation paths through the domain based on

o Their history of mastery (learning style, learning ease/difficulty, etc.)

o Their indication of interests

� Derived from experience within the domain (interest in pre-req subjects would lead to

suggestion of post-req subjects), or

� Experience in other, related domains/k-maps

• This implies linking across domains which is challenging

o Requires use of mappable/equivalent/standard vocabularies, structures,

etc. (XTM, http://en.wikipedia.org/wiki/Topic_Maps)

o Someone else’s (SME, teacher, other learner) recommendation

http://en.wikipedia.org/wiki/Topic_Maps
http://en.wikipedia.org/wiki/Topic_Maps

Learning Theory

- Learner is an active constructor, not a passive recipient of knowledge (A. Brown, UCB – Educational

Researcher, 11/94)

- Communities of Learners are effective: “reciprocal teaching involved the development of a mini-

learning community, intent not only on understanding and interpreting texts as given, but also on

establishing an interpretive community (Fish, 1980) whose interaction with texts was as much a matter

of community understanding and shared experience as it was strictly textual interpretation. (A. Brown,

UCB – Educational Researcher, 11/94)

- A zone of proximal development defines the distance between a performer’s current level of learning

and the level s/he can reach with the help of people, tools, and powerful artifacts (Vygotsky, 1978)

- We are better able to design a spiraling curriculum such as that intended by Bruner (1969 – On

Knowing: essays for the left hand)

